Volume 54, Issue 1 p. 136-144
Article

THE ROLE OF AUXINS AND CYTOKININS IN THE RELEASE OF BUDS FROM DOMINANCE

Tsvi Sachs

Tsvi Sachs

Biological Laboratories, Harvard University, Cambridge, Massachusetts

Present address: Department of Botany, Hebrew University, Jerusalem, Israel.Search for more papers by this author
Kenneth V. Thimann

Kenneth V. Thimann

Biological Laboratories, Harvard University, Cambridge, Massachusetts

Present address: University of California, Santa Cruz, Calif.Search for more papers by this author
First published: 01 January 1967
Citations: 162

Abstract

The paper deals with the general problem of the physiological basis of branching, and the roles of known and unexplored factors in sensitivity to apical dominance. It is shown that when pea seedling shoots are completely or partially inhibited by other shoots on the same plant auxin can promote their elongation, even though it does not have this effect on inhibited buds. This influence of auxin is only exerted on internodal elongation and not on apical growth. When kinetin in a solution of alcohol and carbowax is applied directly to the lateral buds of pea seedlings, it releases them from inhibition by the growing apex. It is shown that the role of alcohol in this solution is to act as a surfactant, permitting good contact with the buds, while that of carbowax, being hygroscopic, is to maintain a thin film of solution over the buds. Buds thus released from apical dominance by kinetin do not elongate as much as do uninhibited control buds. Such kinetin-treated buds can, however, be made to elongate normally by the application of auxin locally to their apices. It is concluded that growing shoots are relatively insensitive to correlative inhibition because they synthesize two types of growth substances, namely, auxin, which antagonizes the inhibitory effect on internodal elongation, and cytokinins, which permit the apex itself to develop. In the discussion it is brought out that many cases of branching, which appear at first to bear little relation to one another, can be understood on the basis of two principles, namely: (1) Any reduction in the growth rate of a dominant apex reduces its inhibitory effect on other apices, and (2) once an apex starts growing it becomes less sensitive to inhibition by other apices These generalizations and the experimental results are tentatively interpreted in terms of an interaction between the syntheses of auxin and of cytoldnin.